Science briefs

The Family Jewels

You’ve heard of heirloom jewelry. The idea takes on a whole new meaning when you turn the cremated remains of your loved one into a piece of jewelry.

Algordanza, based in Switzerland, is one of several companies that transform human remains into diamonds. Business Insider science blogger Kelly Dickerson heard about the idea in a movie and talked to Algordanza about how the process works.

Diamonds are essentially carbon that has been subjected to intense heat and pressure. The human body is about 18 percent carbon. A cremated human body produces about five pounds of ashes. Algordanza needs a little more than a pound of those ashes to separate out a big-enough sample that is at least 99 percent carbon. The remains are put in a chamber where the pressure reaches about six gigapascals (that is, 60,000 times the pressure of the Earth’s atmosphere) and the temperature gets to about 2,700 degrees.

After about a week, according to chief technical officer Frank Ripka, you get a diamond.

No price was given, but “beware,” Dickerson warns, “the diamond-making process isn’t cheap.” It is, however, a little creepy.

– – –

Food

“The Science of Cheese” by Michael H. Tunick

If it’s important to understand the things we love, we ought to start studying cheese. It’s one of Americans’ favorite foods, and it’s getting more popular every year: Per capita consumption has nearly tripled since 1970. Michael Tunick, a research chemist with the Department of Agriculture, has written a book with more information about the history, biology, chemistry, physics, nutrition and even climatology involved in cheese than even the most avid turophile is likely to want.

How did humans come to invent cheese? Most probably, enzymes in the sheep stomachs in which ancient nomads carried milk caused the milk to separate into curds and whey, and the curds turned out to have a bland but agreeable flavor and a pleasant texture. Why does Swiss cheese have holes? They’re the carbon dioxide bubbles made when a subspecies of the Propionibacterium freudenreichii bacterium metabolizes the milk’s lactic and propionic acids. How big should those holes be? About a quarter-inch, by USDA standards.

The book veers from technical (diagrams of protein molecules, details on volatile compounds) to entertaining (in 1841, the Uruguayan navy used wax-coated spheres of Edam as cannonballs, reportedly with some success). It even includes a tongue-in-cheek Periodic Table of the Cheeses, with No. 1 hydrogen replaced by havarti.

bc-science-scan

More in Local News

Grief for the planet is real, and students are feeling it

“They’re losing sleep,” says a UW Bothell lecturer. She leads a seminar on environmental anxiety.

Herald photos of the week

The latest collection of top images by Herald photographers.

Everett school leaders mull next steps on bond, overcrowding

Officials are in this position after voters did not approve a $330.6 million bond measure in February.

Special election Tuesday: Libraries, schools, fire districts

Property levies are on the ballot for the Sno-Isle Library District and Darrington schools.

Granite Falls puts new sewer connections on hold

A surge of residential development is on track to eat up its remaining sewer capacity.

Final feedback of future of Marysville’s schools

Officials now begin to prepare recommendations on high school reconfiguration and other issues.

Cougs beat Dawgs — and the Hawks

WSU boasts the No. 1 specialty license plate, and the money that comes with it.

Man pleads guilty to assault in Christmas Eve stabbing at mall

“Good Samaritan” who tried to break up fight ended up hospitalized with a knife wound to his back.

New support group for those whose loved ones battle opioids

“I remember when my dad told me that every time our family member relapses, we relapse.”

Most Read